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Abstract In this paper indecomposable representations and boson realizations of the
nonlinear angular momentum algebra Rc1,c2,c3

q,p of Witten’s first type are investigated
in a purely algebraic manner. Explicit form of the master representation of Rc1,c2,c3

q,p
on the space of its universal enveloping algebra is given. Then, from this master
representation, other indecomposable representations are obtained in explicit form.
Various kinds of single-boson, single inverse boson, and double-boson realizations of
Rc1,c2,c3

q,p are respectively obtained by generalizing the Holstein–Primakoff realization,
the Dyson realization, and the Jordan–Schwinger realization of the Lie algebras SU(2)
and SU(1,1). For each kind, the unitary realization, the nonunitary realization, and their
connection by the corresponding similarity transformation are respectively discussed.
Using a kind of double-boson realizations, the irreducible representation of Rc1,c2,c3

q,p
in the angular momentum basis is given.

Keywords Deformed algebra, Indecomposable representation, Irreducible
representation, Boson realization, Inversion boson realization
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1 Introduction

Nonlinear algebras refer to some specific deformations of the usual algebras obtained
by introducing deformation parameters, to which they reduce in the limiting case in
which the deformation parameters are set equal to unity. In 1982, Kulish [1] showed
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that the algebra that governs the XXZ-Heisenberg spin model was a deformation
of the Lie algebra SU(2), called nowadays SUq(2). Since then, the development of
quantum groups (Quantized universal enveloping algebras, also called q-algebras or
quantum algebras) [2,3] motivated great interest in various deformations of algebraic
structures. There are many works devoted to various types of nonlinear algebras due
to their interesting mathematical structure [4–9] and possible applications to several
research areas of physics including field theory [10–13], statistical mechanics [14–
18], nuclear physics [19–21]. In molecular physics [22–28], some simple quantum
groups SUq(2), SUq(1, 1), and SUpq(2) have been extensively applied in describing
physical models of diatomic molecules and polyatomic molecules, such as vibrational
spectra, rotational spectra, molecular backbending (bandcrossing), and q-deformed
vibron model, and discussing, plus a rigid rotator, quasi-molecular resonances in the
systems 12C + 12C and 12C + 16O.

The nonlinear Lie algebra to be discussed in this article is a kind of multi-parametric
deformed algebras, which can be viewed as the generalization of the quadratic defor-
mation of SU(2) put forward by Witten [11] in his studying Jone’s polynomials in
node theories and connections with the vertex models in two-dimensional statistical
mechanics. Here we denote it by Rc1,...,cs

q,p , whose three elements Jμ (μ = 3,−,+)
satisfy the following commutation relations

[J3, J−]q = −p J−,

[J3, J+] 1
q

= p

q
J+, (1)

[J+, J−] = P(J3) − P(q J3 − p),

where q and p are real numbers, [X, Y ]q ≡ XY −qY X is a q-deformed commutator,
and P(J3) is a polynomial function of the Cartan element J3, i.e.,

P(J3) =
s∑

i=1

Ci J i
3, (2)

where coefficients Ci are all real numbers, so that, for q �= 1 or Cs �= 0, the highest
degree of the power series of J3 that [J+, J−] produces is s.

For Rc1,...,cs
q,p , there does exist a Casimir invariant of the type considered by Poly-

chronakos [4] and Roček [5] as follows

C = J+ J− + P(q J3 − p) = J− J+ + P(J3). (3)

It is easy to check that C commutes with all three elements Jμ, i.e., [C, Jμ] = 0.
Different from the quantum group SUq(2) [29] and the polynomial angular momen-

tum algebra (PAMA) [6,9], both the deformed commutators and the power series of
J3 appear in the algebraic structure (1) of Rc1,...,cs

q,p . That is to say, Rc1,...,cs
q,p includes

SUq(2) and PAMA as its special cases. It is obvious that when q = p = 1, Rc1,...,cs
1,1

becomes the PAMA with the highest degree of J3 being s − 1 rather than s. When

q = p = 1, C1 = C2 = 1 (or C1 = C2 = −1), and Ci = 0 (i = 3, 4, . . . s), R1,1,0̇
1,1
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(or R−1,−1,0̇
1,1 , where 0̇ implies that the number 0 is repeated as many times as nec-

essary) turns to be the usual angular momentum algebra SU(2) (or its non-compact

type SU(1,1)) [30]. If let q = p = 1, C1 = 1, and Ci = 0 (i = 2, 3, . . . s), then R1,0̇
1,1

becomes the standard Heisenberg–Weyl algebra [31]. Hence, Rc1,...,cs
q,p can be viewed

as a type of (s + 2)-parameteric deformations of SU(2) (or SU(1,1)) or Heisenberg–
Weyl algebra.

Indecomposable representations (i.e., reducible but not completely reducible repre-
sentations) of Lie algebras have been found useful in physics for a long time [32–36].
For example, in the quantum mechanical systems, the indecomposable representations
have been applied to quasi-exactly soluble potentials [37]. Boson realizations of Lie
algebras have played a central role in the study of algebraic models for atomic and
molecular structures [38,39]. For a general knowledge of the various types of boson
realizations and their applications in physics, one can refer to Klein’s review article
[40].

In this paper, we shall study in detail indecomposable representations and boson

realizations of the five-parametric deformed algebra Rc1,c2,c3
q,p ≡ Rc1,c2,c3,0̇

q,p . First,
following the idea presented by Jacobson [43] and Dixmier [44], we shall use the
purely algebraic method [41] to calculate the master representation of Rc1,c2,c3

q,p on
its universal enveloping algebra U (R). This master representation may induce the
corresponding representations on quotient spaces U (R)/Ii defined by different left
ideals Ii s with respect to U (R). It is well known that for the ordinary Lie algebras
and PAMAs, their inhomogenous boson realizations can be directly obtained by map-
ping the corresponding indecomposable representations into the Fock representations
[9,42], because these algebras have the same ordinary commutator (Lie product) as the
Heisenberg–Weyl algebras generated by the needed sets of boson operators. However,
for this kind of multi-parametric deformed algebra Rc1,...,cs

q,p , there exists no simple
mapping relation between its indecomposable representations and the Fock representa-
tions, so we can not obtain the corresponding boson realizations of Rc1,c2,c3

q,p . Here, we
shall apply an alternative method to studying various boson realizations of Rc1,c2,c3

q,p ,
which are analogous to the well-known results of SU(2) and SU(1,1) [30,40].

This paper is arranged as follows. In Sect. 2, the master representation of Rc1,c2,c3
q,p

is calculated, then from it, various indecomposable representations of Rc1,c2,c3
q,p on

different quotient spaces will be discussed. In Sect. 3, the single-boson realization and
two kinds of double-boson realizations of Rc1,c2,c3

q,p are respectively studied in detail,
which includes unitary realizations, non-unitary realizations, and their connections.
Then, the irreducible representation of Rc1,c2,c3

q,p is calculated by using one of double-
boson realizations. A simple discussion is given in the final section.

In the following N denotes the set of positive integers and C the set of complex
numbers.

2 Indecomposable representations of Rc1,c2,c3
q,p

Accoring to the definition of Eq. (1), the commutation relations complied by Rc1,c2,c3
q,p

read
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[J3, J−]q = −p J−,

[J3, J+] 1
q

= p

q
J+, (4)

[J+, J−] = p
(

C1 − C2 p + C3 p2
)

+
(

C1 − C1q + 2C2 pq − 3C3 p2q
)

J3

+
(

C2 − C2q2 + 3C3 pq2
)

J 2
3 +

(
C3 − C3q3

)
J 3

3 .

By means of the Poincaré–Birkhoff–Witt theorem [43,44], the basis for U (R) can be
expressed as

{X(n,m,r) = J n+ J m− Jr
3 |n, m, r ∈ N}, (5)

where the identity operator is obtained by setting n, m, r to be zero simultaneously,
i.e., 1 = X(0,0,0). By acting with the generators of Rc1,c2,c3

q,p from the left on the basis
(5), we obtain

ρ(J3)X(n,m,r) = qm−n X(n,m,r+1) − p
1 − qm−n

1 − q
X(n,m,r),

ρ(J+)X(n,m,r) = X(n+1,m,r), (6)
ρ(J−)X(n,m,r) = X(n,m+1,r) + C3 Qm(3,−3, 0)X(n−1,m,r+3)

+{3C3 p[Qm(3,−3, 1) − Qm(2,−2, 1)] + C2 Qm(2,−2, 0)} X(n−1,m,r+2)

+
{

3C3 p2 [Qm(3,−3, 2) − 2Qm(2,−2, 2) + Qm(1,−1, 2)]

+2C2 p [Qm(2,−2, 1) − Qm(1,−1, 1)] + C1 Qm(1,−1, 0)
}

X(n−1,m,r+1)

+p
{

C3 p2 [Qm(3,−3, 3) − Qm(2,−2, 3) + Qm(1,−1, 3)]

+C2 p [Qm(2,−2, 2) − Qm(1,−1, 2)] + C1 Qm(1,−1, 1)
}

X(n−1,m,r),

where

Qm(x, y, z) ≡ qx(m+1) 1 − q yn

(1 − q)z
, x, y, z ∈ N. (7)

It is not difficult to verify that the map ρ forms a representation, i.e.,

[ρ(J3), ρ(J−)]q = −pρ(J−),

[ρ(J3), ρ(J+)] 1
q

= p

q
ρ(J+),

[ρ(J+), ρ(J−)] = p(C1 − C2 p + C3 p2) +
(

C1−C1q + 2C2 pq−3C3 p2q
)

ρ(J3)

+
(

C2 − C2q2 + 3C3 pq2
)

ρ(J3)
2 +

(
C3 − C3q3

)
ρ(J3)

3.
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We call ρ the master representation of Rc1,c2,c3
q,p on U (R). Owing to the fact that the

values for the indices m and r do not decrease under the action of ρ, the representation
ρ given by Eq. (6) is indecomposable in m and r .

From Eq. (6) it is obvious that the operators ρ(J3) and ρ(J±) can increase and
decrease the power n of J+, while only increase the powers m and r of J− and J3.
Therefore, for a fixed M , R ∈ N,

V (M, R) =
{

X(n,m+M,r+R) = J n+ J m+M− Jr+R
3 |n, m, r ∈ N

}
(8)

is the subspace of U (R). Note that V (0, 0) = U (R). V (M, R) is invariant under the
action of the representation ρ, so we may get the subduced representation of Rc1,c2,c3

q,p
through the restriction of the representation ρ on the subspace V (M, R). Furthermore,
on the quotient space U (R)/V (M, R), the induced representation of Rc1,c2,c3

q,p may be
obtained from the representation ρ by setting X(n,m+M,r+R) → 0 formally. Next, we
shall consider several other quotient spaces U (R)/Ii , where Ii s denote the left ideals
with respect to U (R).

(1) Consider the left ideal I1 generated by one element J3 − �1 (� ∈ C), then the
corresponding quotient space U (R)/I1 is spanned by

{
X(n,m) ≡ X(n,m,0) modI1|n, m ∈ N

}
, (9)

therefore the representation ρ given by Eq. (6) may induce a representation, denoted
by ρ1, on U (R)/I1, i.e.,

ρ1(J3)X(n,m) =
(

qm−n� − p
1 − qm−n

1 − q

)
X(n,m),

ρ1(J+)X(n,m) = X(n+1,m), (10)

ρ1(J−)X(n,m) = X(n,m+1) +
{

C3 Qm(3,−3, 0)�3

+{3C3 p[Qm(3,−3, 1) − Qm(2,−2, 1)] + C2 Qm(2,−2, 0)} �2

+
{

3C3 p2 [Qm(3,−3, 2) − 2Qm(2,−2, 2) + Qm(1,−1, 2)]

+2C2 p [Qm(2,−2, 1) − Qm(1,−1, 1)] + C1 Qm(1,−1, 0)
}

�

+
{

C3 p3 [Qm(3,−3, 3) − Qm(2,−2, 3) + Qm(1,−1, 3)]

+C2 p2 [Qm(2,−2, 2) − Qm(1,−1, 2)] + C1 pQm(1,−1, 1)
}

×X(n−1,m),

where the property ρ1(J3)1 = �1 has been utilized. It is obvious that X (n, m) in
U (R)/I1 is the eigenvector of the operator ρ(J3) corresponding to the eigenvalue

qm−n� − p 1−qm−n

1−q . Notice from Eq. (10) that the values of the index m do not
decrease under the action of ρ1, the representation ρ1 is indecomposable in m, and
has an invariant subspace V1(M), which is spanned by

123



790 J Math Chem (2013) 51:785–809

{
X(n,m+M) = J n+ J m+M− |n, m ∈ N

}
(11)

for a fixed M ∈ N, and V1(0) = U (R)/I1. The subduced representation on V1(M)

can be obtained by restricting ρ1 to the basis (11) while the induced representation of
Rc1,c2,c3

q,p on the quotient space U (R)/I1/V1(M) may be obtained by formally setting
X(n,m+M) → 0. When M = 1, Eq. (10) gives directly

ρ1(J3)X(n) =
(

q−n� − p
1 − q−n

1 − q

)
X(n),

ρ1(J+)X(n) = X(n+1), (12)

ρ1(J−)X(n) =
{

C3 Q(3,−3, 0)�3

+{3C3 p[Q(3,−3, 1) − Q(2,−2, 1)] + C2 Q(2,−2, 0)} �2

+
{

3C3 p2 [Q(3,−3, 2) − 2Q(2,−2, 2) + Q(1,−1, 2)]

+2C2 p [Q(2,−2, 1) − Q(1,−1, 1)] + C1 Q(1,−1, 0)

}
�

+p
{

C3 p2 [Q(3,−3, 3) − Q(2,−2, 3) + Q(1,−1, 3)]

+C2 p [Q(2,−2, 2) − Q(1,−1, 2)] + C1 Q(1,−1, 1)
}

X(n−1),

where Q(x, y, z) ≡ Q0(x, y, z). Or equivalently, we may consider the quotient
space U (R)/I2 associated with the left ideal I2, which is generated by two elements
{J−, J3 − �1} (� ∈ C). The basis of U (R)/I2 reads

{
X(n) ≡ X(n,0,0)modI2|n ∈ N

}
. (13)

Hence, U (R)/I1/V1(M) ∼ U (R)/I2. If all the coefficients on the right hand side of
Eq. (12) are nonzero, then ρ1 is irreducible.

The space V1(M ′) (M ′ ∈ N) with the basis

{
X(n,m+M ′) = J n+ J m+M ′

− |n, m ∈ N

}
(14)

is an invariant subspace of V1(M) as long as M ′ > M . Thus, on the quotient space
V1(M)/V1(M ′), ρ1 may also induce a representation. For the special case of M ′ =
M + 1, we have

ρ̃1(J3)X(n,M) =
(

q M−n� − p
1 − q M−n

1 − q

)
X(n,M),

ρ̃1(J+)X(n,M) = X(n+1,M), (15)

ρ̃1(J−)X(n,M) =
{

C3 QM (3,−3, 0)�3

+{3C3 p[QM (3,−3, 1) − QM (2,−2, 1)] + C2 QM (2,−2, 0)} �2
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+
{

3C3 p2 [QM (3,−3, 2) − 2QM (2,−2, 2) + QM (1,−1, 2)]

+2C2 p [QM (2,−2, 1) − QM (1,−1, 1)] + C1 QM (1,−1, 0)} �

+
{

C3 p3 [QM (3,−3, 3) − QM (2,−2, 3) + QM (1,−1, 3)]

+C2 p2 [QM (2,−2, 2) − QM (1,−1, 2)] + C1 pQM (1,−1, 1)
}

×X(n−1,M).

The representation ρ̃1 is algebraically equivalent to ρ1 given by Eq. (12).
(2) The left ideal I3 is generated by one element J− − �1 (� ∈ C), then, on the

quotient space U (R)/I3 spanned by

{
X(n,r) ≡ X(n,0,r)modI3|n, r ∈ N

}
, (16)

the representation ρ given by Eq. (6) induces the following representation

ρ2(J3)X(n,r) = q−n X(n,r+1) − p
1 − q−n

1 − q
X(n,r),

ρ2(J+)X(n,r) = X(n+1,r), (17)

ρ2(J−)X(n,r) = �

r∑

k=0

(
r

k

)
pr−kqk X(n,k) + C3 Q(3,−3, 0)X(n−1,r+3)

+{3C3 p[Q(3,−3, 1) − Q(2,−2, 1)] + C2 Q(2,−2, 0)} X(n−1,r+2)

+
{

3C3 p2 [Q(3,−3, 2) − 2Q(2,−2, 2) + Q(1,−1, 2)]

+2C2 p [Q(2,−2, 1) − Q(1,−1, 1)] + C1 Q(1,−1, 0)} X(n−1,r+1)

+p
{

C3 p2 [Q(3,−3, 3) − Q(2,−2, 3) + Q(1,−1, 3)]

+C2 p [Q(2,−2, 2) − Q(1,−1, 2)] + C1 Q(1,−1, 1)} X(n−1,r),

where
(r

k

) = r !
k!(r−k)! is the usual binomial coefficient, and the property ρ2(J−)1 = �1

has been utilized.
If � = 0, then the induced representation ρ2 given by Eq. (17) is indecomposible

in r , and has the invariant subspace V2(R) spanned by

{
X(n,r+R) = J n+ Jr+R

3 |n, r ∈ N

}
(18)

for a fixed R ∈ N. The subspace V2(R) carries a subrepresentation of Rc1,c2,c3
q,p , which

may be obtained by restricting ρ2 to the basis (18). Furthermore, on the quotient
space U (R)/I3/V2(R), ρ2 induces a representation, which may be obtained by for-
mally setting X(n,r+R) → 0. For the case of R = 1, the induced representation on
U (R)/I3/V2(1) is identical to ρ1 given by Eq. (12) with � = 0.

Finally, we discuss another type of representation of Rc1,c2,c3
q,p by using the following

new basis
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{
J n+F(C, J3), J m− G(C, J3)|n, m ∈ N

}
, (19)

where F and G are the polynomial functions with respect to C and J3. The unit element
is obtained by n = 0 and F = 1, m = 0 and G = 1.

Thus, from Eq. (6), we have

ρ̇(J3)J n± = q∓n J n± J3 − p
1 − q∓n

1 − q
J n±,

ρ̇(J±)J n± = J n+1± , (20)

ρ̇(J−)J n+ = J n+ J− + C3 Q(3,−3, 0)J n−1+ J 3
3

+{3C3 p[Q(3,−3, 1) − Q(2,−2, 1)] + C2 Q(2,−2, 0)} J n−1+ J 2
3

+
{

3C3 p2 [Q(3,−3, 2) − 2Q(2,−2, 2) + Q(1,−1, 2)]

+ 2C2 p (Q(2,−2, 1) − Q(1,−1, 1)) + C1 Q(1,−1, 0)} J n−1+ J3

+
{

C3 p3 [Q(3,−3, 3) − 3Q(2,−2, 3) + 3Q(1,−1, 3)]

+ C2 p2 [Q(2,−2, 2) − 2Q(1,−1, 2)] + C1 pQ(1,−1, 1)
}

J n−1+ ,

ρ̇(J+)J n− = J n− J+ + C3 Q(0, 3, 0)J n−1− J 3
3

+ [3C3 pQ(0, 3, 1) − 3C3 pQ(0, 2, 1) + C2 Q(0, 2, 0)] J n−1− J 2
3

+
{

3C3 p2 [Q(0, 3, 2) − 2Q(0, 2, 2) + Q(0, 1, 2)]

+ 2C2 p (Q(0, 2, 1) − Q(0, 1, 1)) + C1 Q(0, 1, 0)} J n−1− J3

+p
{

C3 p2 [Q(0, 3, 3) − 3Q(0, 2, 3) + 3Q(0, 1, 3)]

+ C2 p [Q(0, 2, 2) − 2Q(0, 1, 2)] + C1 Q(0, 1, 1)} J n−1− .

Let us consider the left ideal I4 generated by two elements {C − λ1, J3 − �1}, where
λ,� ∈ C, then on the quotient space U (R)/I4, ρ̇ induces the following representation

ρ̇1(J3)J n± =
(

q∓n� − p
1 − q∓n

1 − q

)
J n±,

ρ̇1(J±)J n± = J n+1± , (21)

ρ̇1(J−)J n+ =
{
λ − C3q3−3n�3 +

{
3C3 p[Q(3,−3, 1) − Q(2,−2, 1) + q2]

−C2q2−2n
}

�2

+
{

3C3 p2 [Q(3,−3, 2) − 2Q(2,−2, 2) + Q(1,−1, 2) − q]

+ 2C2 p(Q(2,−2, 1) − Q(1,−1, 1) − q) − C1q1−n
}

�

+
{

C3 p3 [Q(3,−3, 3) − 3Q(2,−2, 3) + 3Q(1,−1, 3) + 1]

+C2 p2 [Q(2,−2, 2) − 2Q(1,−1, 2) − 1]
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+ C1[Q(1,−1, 1) − 1] − C0}
}

J n−1+ ,

ρ̇1(J+)J n− =
{
λ − C3q3n�3 +

{
3C3 p[Q(0, 3, 1) − Q(0, 2, 1)] − C2q2n

}
�2

+
{

3C3 p2 [Q(0, 3, 2) − 2Q(0, 2, 2) + Q(0, 1, 2)]

+ 2C2 p(Q(0, 2, 1) − Q(0, 1, 1)) − C1qn}
�

+
{

C3 p3 [Q(0, 3, 3) − 3Q(0, 2, 3) + 3Q(0, 1, 3)]

+ C2 p2 [Q(0, 2, 2) − 2Q(0, 1, 2)] + C1 Q(0, 1, 1) − C0

}}
J n−1− ,

where the properties ρ̇1(C)1 = λ1 and ρ̇1(J3)1 = �1 have been used. It is obvious
from Eq. (21) that J n± in U (R)/I4 are the eigenvectors of ρ̇1(J3) corresponding to the

eigenvalues q∓n� − p 1−q∓n

1−q , respectively. This representation is irreducible if all the
coefficients in the last two equations are nonzero.

3 Boson realizations of Rc1,c2,c3
q,p

In this section, we will study various boson realizations of Rc1,c2,c3
q,p in detail.

Denote t pairs of mutually commuting boson operators by {ai , a+
i |i = 1, 2, . . . , t}

(the annihilation operators ai are adjoint to the creation operators a+
i , i.e., ai = (a+

i )†,
a+

i = (ai )
†), which satisfy the commutation relations [30]

[ai , a+
j ] = δi j ,

[n̂i , a+
j ] = δi j a

+
j , (22)

[n̂i , a j ] = −δi j a j ,

where n̂i ≡ a+
i ai is the particle number operator of the i th boson. Furthermore, the

complete set of basis vectors of Fock space

Ft = {|n1n2 . . . nt 〉|n1, n2, . . . , nt = 0, 1, 2, . . .} (23)

may be constructed from the vacuum state |00 . . . 0〉 by using the definition

|n1n2 . . . nt 〉 = (a+
1 )n1(a+

2 )n2 . . . (a+
t )nt

√
n1!n2! . . . nt ! |00 . . . 0〉. (24)

In fact, these basis vectors are the common normalized eigenvectors of n̂i belonging
to eigenvalues ni respectively, i.e.,

n̂i |n1 . . . ni . . . nt 〉 = ni |n1 . . . ni . . . nt 〉, (25)

and satisfy
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ai |n1 . . . ni . . . nt 〉 = √
ni |n1 . . . ni − 1 . . . nt 〉,

a+
i |n1 . . . ni . . . nt 〉 = √

ni + 1|n1 . . . ni + 1 . . . nt 〉. (26)

Although the boson operators, ai and a+
i , do not possess any inverse in a strict sense

because of their singular feature, the generalized inverse of these boson operators,
denoted by a−1

i and (a+
i )−1 respectively, may be defined by their action on the basis

vectors of Fock space [45–47],

a−1
i |n1 . . . ni . . . nt 〉 = 1√

ni + 1
|n1 . . . ni + 1 . . . nt 〉,

(a+
i )−1|n1 . . . ni . . . nt 〉 = (1 − δni ,0)

1√
ni

|n1 . . . ni − 1 . . . nt 〉. (27)

In fact, a−1
i are only the right inverse of ai since they satisfy

ai a
−1
i = I,

however, a−1
i ai are not unity (I ) but are given by

a−1
i ai = I − |00 . . . 0〉〈00 . . . 0|.

where |00 . . . 0〉〈00 . . . 0| is the projection operator on vacuum. Similarly, (a+
i )−1 are

only the left inverse of a+
i . As is seen, a−1

i behave as the creation operators, while
(a+

i )−1 as the annihilation operators.
By direct calculations, it is easy to obtain the following commutation relations

[(a+
i )−1, a+

j ] = δi j |00 . . . 0〉〈00 . . . 0|,
[n̂i , (a+

j )−1] = −δi j (a
+
j )−1, (28)

[n̂i , a−1
j ] = δi j a

−1
j .

3.1 Single-boson realizations of Rc1,c2,c3
q,p

The single-boson realizations of Rc1,c2,c3
q,p may be chosen in the following form

B(k)(J3) = h(k)(n̂),

B(k)(J+) = f (k)(n̂)ak, (29)

B(k)(J−) = (a+)k g(k)(n̂),

where k is an integer, h(k)(n̂), f (k)(n̂), and g(k)(n̂), being real operator functions of n̂
only, have to be determined by the commutation relations (4). For k = 1, 2, 3, . . ., we
call B(k)(Jμ) (μ = 3, ±) the boson realizations of simple type, quadratic type, cubic
type, and so on respectively owing to the fact that the action of B(k)(J±) on the basis
vector |n〉 of the Fock space F1 leads to |n ∓ k〉 ∼ B(k)(J±)|n〉.
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(1) For k > 0.
Using the first or second equation of Eq. (4), we may obtain the single-variable

difference equation satisfied by h(k)(n̂)

h(k)(n̂) − 1

q
h(k)(n̂ + k) = p

q
, (30)

with the help of the relations

(a+)k f (n̂) = f (n̂ − k)(a+)k,

ak f (n̂) = f (n̂ + k)ak, i = 1, 2.
(31)

The solution of Eq. (30) reads

h(k)(n̂) = p

q − 1

(
1 − qn̂/k−α

)
, (32)

where α is an arbitrary real number. It is worth mentioning that h(k)(n̂) is independent
of the parameters Ci (i = 1, 2, 3).

The third equation of Eq. (4) requires that f (k)(n̂) and g(k)(n̂) satisfy the following
difference equation

[
k∏

i=1

(n̂ + i)

]
f (k)(n̂)g(k)(n̂) −

[
k∏

i=1

(n̂ − i + 1)

]
f (k)(n̂ − k)g(k)(n̂ − k)

= p
(

C1 − C2 p + C3 p2
)

+
(

C1 − C1q + 2C2 pq − 3C3 p2q
)

h(k)(n̂)

+
(

C2 − C2q2 + 3C3 pq2
) [

h(k)(n̂)
]2 + C3

(
1 − q3

) [
h(k)(n̂)

]3
. (33)

Note that the functions f (k)(n̂) and g(k)(n̂) do not appear separately but only appear
as their product f (k)(n̂)g(k)(n̂). Below we will study in more detail the case of k = 1.

Inserting Eq. (32) into Eq. (33) and solving it, we obtain

f (1)(n̂)g(1)(n̂) = pq−3α(qn̂+1 − 1)

(q − 1)3(n̂ + 1)

{
C1(q − 1)2q2α

+C2 p(q − 1)qα
(

2qα − qn̂+1 − 1
)

+C3 p2
[
3qα

(
qα − 1

) + qn̂+1
(

qn̂+1 − 3qα + 1
)

+ 1
]}

. (34)

This solution shows that we may have some freedom in the choice of the functions
f (1)(n̂) and g(1)(n̂):

(a) The unitary boson realization.

The boson realization B(Jμ) (μ = 3,±) is unitary if they satisfy

[B(J3)]
† = B(J3),

[
B(J±)

]† = B(J∓).
(35)
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We call Eq. (35) the unitary conditions of the boson realization.
The second equation of Eq. (35) requires that f (1)(n̂) = g(1)(n̂), then solving

Eq. (34), we may obtain from Eq. (30) a kind of unitary single-boson realization

B̆(1)(J3) = p

q − 1

(
1 − qn̂−α

)
,

B̆(1)(J+) =
√

pq−3α(qn̂+1−1)

(q−1)3(n̂+1)

{
C1(q−1)2q2α + C2 p(q−1)qα

(
2qα−qn̂+1 − 1

)

+C3 p2
[
3qα(qα − 1) + qn̂+1(qn̂+1 − 3qα + 1) + 1

]}1/2
a, (36)

B̆(1)(J−) = a+
√

pq−3α
(
qn̂+1 − 1

)

(q − 1)3(n̂ + 1)

{
C1(q − 1)2q2α

+C2 p(q − 1)qα
(

2qα − qn̂+1 − 1
)

+C3 p2
[
3qα(qα − 1) + qn̂+1(qn̂+1 − 3qα + 1) + 1

]}1/2
.

In order to obtain the real boson realization, the values of n in the matrix elements
of B̆(1)(J±) in the Fock space F1 = {|n〉 |n = 0, 1, 2, . . .} need limiting for the
given {q, p, C1, C2, C3}. When q = p = C1 = C2 = 1 and C3 = 0, Eq. (36)
becomes the Holstein–Primakoff realization of SU(2) [48]. Hence, we call B̆(k)(Jμ)

the Holstein–Primakoff-like realization of kth order of Rc1,c2,c3
q,p .

(b) The non-unitary boson realization.

If the unitary conditions (35) need not satisfying, it follows from Eq. (34) that the
convenient choice, for example, g(n̂) = 1, may immediately give rise to a kind of
non-unitary single-boson realization of interest

B̄(1)(J3) = p

q − 1

(
1 − qn̂−α

)
,

B̄(1)(J+) = pq−3α(qn̂+1 − 1)

(q − 1)3(n̂ + 1)

{
C1(q − 1)2q2α

+C2 p(q − 1)qα
(

2qα − qn̂+1 − 1
)

+C3 p2
[
3qα(qα − 1) + qn̂+1

(
qn̂+1 − 3qα + 1

)
+ 1

]}
a,

B̄(1)(J−) = a+. (37)

When q = p = C1 = C2 = 1 and C3 = 0, Eq. (37) becomes the standard Dyson real-
ization of SU(2) introduced originally by Dyson [49] in his study of spin-wave inter-
actions. Hence, we call B̄(k)(Jμ) the Dyson-like realization of kth order of Rc1,c2,c3

q,p .
Different from the Holstein–Primakoff-like realization (36), no square-root symbol
appears in Eq. (37) so that the Dyson-like realization may not only avoid the conver-
gence questions associated with the expansion of square-root symbol but also make
the values of n in F1 = {|n〉 |n = 0, 1, 2, . . .} unlimited.
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Inserting Eq. (36) or (37) into Eq. (3), we obtain the Casimir operator of Rc1,c2,c3
q,p

C = pq−3α(qα−1)

(q − 1)3

{
(q − 1)qα

[
C1(q − 1)qα+C2 p(qα−1)

]+C3 p2(qα − 1)2
}

.

(38)

It is clear that C, which is independent of n̂, is a number.

(c) Unitarization of the non-unitary realization.

It is not difficult to find that the non-unitary Dyson-like realization B̄(1)(Jμ) may
be related to the unitary Holstein–Primakoff-like realization B̆(1)(Jμ) by a similarity
transformation S, i.e.,

SB̄(1)(Jμ)S−1 = B̆(1)(Jμ), μ = 3, ±. (39)

In general, S is an operator function with respect to {a, a+, n}. Using the unitary
condition B̆(1)(J+) = (B̆(1)(J−))†, we obtain from Eq. (39)

U−1
(

B̄(1)(J−)
)†

U = B̄(1)(J+), (40)

where U ≡ S†S. Note that B̄(1)(J3) is already Hermitian, so we call Eq. (40) the
unitarization equation of the Dyson-like realization. As an example, let us calculate
concretely the explicit expression of S. The first equation of Eq. (39) implies that S
commutes with J3 and is at most the function of n̂, thus, calculating the matrix element
of Eq. (40) between the basis vectors 〈n−1| and |n〉 and using Eq. (37), we may derive
the equation satisfied by S, i.e.,

〈n|S|n〉2 = pq−3α(qn − 1)

(q − 1)3n

{
C1(q − 1)2q2α + C2 p(q − 1)qα(2qα − qn − 1)

+C3 p2 [
3qα(qα − 1) + qn(qn − 3qα + 1) + 1

]} 〈n − 1|S|n − 1〉2.

(41)

Solving Eq. (41) with the initial condition 〈0|S|0〉 = κ0 (κ0 is a real number) gives

S(n) = κ0

(
p

(q − 1)3

)n/2 n−1∏

l=0

1√
l + 1

{
C1

3∑

k=1

[3(k−1)(k−3)+1]qk−α
(

ql −q−1
)

+C2 p
1∑

k=0

(−1)kqk−α(2 − q−α − 2ql+1 + q2i−α+2)

+ C3 p2
3∑

k=1

[(5k − 6)(k − 3) + 1]q−kα
(

qk(l+1) − 1
)}1/2

. (42)
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Using Eq. (25), S(n) may be written as the operator function S(n̂) by replacing n → n̂
in Eq. (42), so that S(n) = 〈n|S(n̂)|n〉.

(2) For k < 0.
Using the same method as the case of k > 0, we obtain

h(−1)(n̂) = p

q − 1

(
1 − q−n̂−1

)
, (43)

and

f (−1)(n̂)g(−1)(n̂) = − n̂ pq−3n̂(qn̂ − 1)

(q − 1)3

{
(q − 1)qn̂

×
[
C1(q − 1)qn̂ + C2 p(qn̂ − 1)

]
+ C3 p2s(qn̂ − 1)2

}
, (44)

respectively.
Inserting Eqs. (43) and (44) into Eq. (30), we may obtain the explicit expressions

for the unitary single inverse boson realization by taking f (−1)(n̂) = g(−1)(n̂), i.e.,

B̆(−1)(J3) = p

q − 1

(
1 − q−n̂−1

)
,

B̆(−1)(J+) =
√

− n̂ pq−3n̂(qn̂ − 1)

(q − 1)3

{
(q − 1)qn̂

×
[
C1(q − 1)qn̂ + C2 p(qn̂ − 1)

]
+ C3 p2(qn̂ − 1)2

}1/2
a−1, (45)

B̆(−1)(J−) = (a+)−1

√

− n̂ pq−3n̂(qn̂ − 1)

(q − 1)3

{
(q − 1)qn̂

×
[
C1(q − 1)qn̂ + C2 p(qn̂ − 1)

]
+ C3 p2(qn̂ − 1)2

}1/2
,

and the non-unitary one by taking g(−1)(n̂) = 1, i.e.,

B̄(−1)(J3) = p

q − 1

(
1 − q−n̂−1

)
,

B̄(−1)(J+) = − n̂ pq−3n̂(qn̂ − 1)

(q − 1)3

{
(q − 1)qn̂

×
[
C1(q − 1)qn̂ + C2 p(qn̂ − 1)

]
+ C3 p2(qn̂ − 1)2

}
a−1, (46)

B̄(−1)(J−) = (a+)−1.

The above two kinds of inverse boson realizations are unfamiliar to us. Now let us
see the corresponding results for SU(2). Setting q = p = C1 = C2 = 1 and C3 = 0
in Eqs. (45) and (46) respectively gives the single inverse boson realizations of SU(2):
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B̆(−1)
su2 (J3) = n̂,

B̆(−1)
su2 (J+) = n̂

√−(n̂ + 1)a−1,

B̆(−1)
su2 (J−) = (a+)−1n̂

√−(n̂ + 1),

(47)

and

B̄(−1)
su2 (J3) = n̂,

B̄(−1)
su2 (J+) = −(n̂ + 1)n̂2a−1,

B̄(−1)
su2 (J−) = (a+)−1.

(48)

We notice from Eq. (47) that in F1 the square roots in the matrix elements 〈n ± 1|
B̆(−1)

su2 (J±)|n〉 are either pure imaginary or null.
The similarity transformation S(n̂), which transforms the non-unitary realization

B̄(−1)(Jμ) to the unitary realization B̆(−1)(Jμ), reads

S(n) = ε0

(
p

(q − 1)3

)−n/2 n−1∏

l=0

√
−q3(l+1)

(l + 1)(ql+1 − 1)

{
C1(q − 1)3q2(l+1)

+C2 p(q − 1)(ql+1 − 1)ql+1 + C3 p2(ql+1 − 1)2
}−1/2

, (49)

with the initial condition being S(0) = 〈0|S(n̂)|0〉 = ε0 (ε0 is a real number).

3.2 The first kind of double-boson realizations

Generalizing the famous Jordan–Schwinger realization of SU(2) [30,50], the first kind
of double-boson realizations of Rc1,c2,c3

q,p may be defined as

B(k,l)
1 (J3) = h(k,l)

1 (n̂1, n̂2),

B(k,l)
1 (J+) = f (k,l)

1 (n̂1, n̂2)(a
+
1 )kal

2, (50)

B(k,l)
1 (J−) = ak

1(a+
2 )l g(k,l)

1 (n̂1, n̂2),

where k and l are integers, h(k,l)
1 (n̂1, n̂2), f (k,l)

1 (n̂1, n̂2), and g(k,l)
1 (n̂1, n̂2) are the

operator functions of n̂1 and n̂2, which need determining by the commutation relations
(4). For the fixed (k, l), the action of B(k,l)

1 (J±) on some basis vector |n1n2〉 of F2

gives |n1 ± k, n2 ∓ l〉 = B(k,l)
1 (J±)|n1n2〉.

Using the first or second equation of Eq. (4), we obtain the equation satisfied by
h(k,l)

1 (n̂1, n̂2)

h(k,l)
1 (n̂1, n̂2) − 1

q
h(k,l)

1 (n̂1 − k, n̂2 + l) = p

q
. (51)
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Solving Eq. (51) gives

h(k,l)
1 (n̂1, n̂2) = p

q − 1

(
1 − q− n̂1

2k + n̂2
2l

)
. (52)

The third equation of Eq. (4) requires that f (k,l)
1 (n̂1, n̂2)g

(k,l)
1 (n̂1, n̂2) satisfies the

following difference equation

[
k∏

i=1

(
n̂1 − i + 1

)] [
l∏

i=1

(
n̂2 + i

)]
f (k,l)
1 (n̂1, n̂2)g

(k,l)
1

(
n̂1, n̂2

)

−
[

k∏
i=1

(
n̂1 + i

)] [
l∏

i=1

(
n̂2 − i + 1

)]
f (k,l)
1

(
n̂1+ k, n̂2−l

)
g(k,l)

1

(
n̂1+ k, n̂2−l

)

= p
(
C1 − C2 p + C3 p2

) + (
C1 − C1q + 2C2 pq − 3C3 p2q

)
h(k,l)

1 (n̂1, n̂2)

+ (
C2 − C2q2 + 3C3 pq2

) [
h(k,l)

1

(
n̂1, n̂2

)]2 + C3(1 − q3)
[
h(k,l)

1

(
n̂1, n̂2

)]3
.

(53)

However, it is very difficult to obtain the general solutions of Eq. (53) for arbitrary k
and l. Below we will study in more detail the simple case of (k, l) = (1, 1).

Inserting Eq. (52) into Eq. (53) and solving it, we obtain

f1(n̂1, n̂2)g1(n̂1, n̂2) = pq1−M̂/2(qn̂1 − 1)

(q − 1)3n̂1(n̂2 + 1)

[−C1(q − 1)2

+C2 p(q − 1)
(

q1+N̂/2 + q1−M̂/2 − 2
)

−C3 p2
(

q2+N̂ + q2−M̂ − 3q1+N̂/2 − 3q1−M̂/2 + q2+n̂2 + 3
)]

,

(54)

here and afterwards, the superscript (1, 1) has been omitted for the sake of simplicity,
N̂ = n̂1 + n̂2 is the total particle number operator, and M̂ = n̂1 − n̂2 the particle
number difference operator.

In the following, from Eq. (54) we will discuss respectively the unitary realizations
and the non-unitary realizations by choosing f1(n̂1, n̂2) and g1(n̂1, n̂2).

(a) The unitary realization.

The unitary conditions (35) now read

B†
1 (J3) = B1(J3),

B†
1 (J±) = B1(J∓).

(55)

Notice that B1(J3) is already Hermitian. The two later equations of Eq. (55) require
f1(n̂1, n̂2) = g1(n̂1, n̂2). Thus, solving Eq. (54) and substituting the expression of
f1(n̂1, n̂2) into Eq. (51), we may obtain
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B̆1(J3) = p

q − 1

(
1 − q−M̂/2

)
,

B̆1(J+) =
√

pq1−M̂/2
(
qn̂1 − 1

)

(q − 1)3n̂1(n̂2 + 1)
[−C1(q − 1)2

+C2 p(q − 1)
(

q1+N̂/2 + q1−M̂/2 − 2
)

−C3 p2
(

q2+N̂ + q2−M̂ − 3q1+N̂/2 − 3q1−M̂/2 + q2+n̂2 + 3
)
]1/2a+

1 a2,

(56)

B̆1(J−) = a1a+
2

√
pq1−M̂/2

(
qn̂1 − 1

)

(q − 1)3n̂1(n̂2 + 1)

[
−C1(q − 1)2

+C2 p(q − 1)
(

q1+N̂/2 + q1−M̂/2 − 2
)

−C3 p2
(

q2+N̂ + q2−M̂ − 3q1+N̂/2 − 3q1−M̂/2 + q2+n̂2 + 3
)]1/2

.

It can be easily checked that the realization (56) satisfies the commutation relations of
Rc1,c2,c3

q,p . We observe that B̆1(J3) depends on the particle number difference operator
M̂ only. Except for the case of q = p = C1 = C2 = 1 and C3 = 0, Eq. (56) is
analogous to the Holstein–Primakoff single-boson realization of SU(2) [48] because
of the existence of the square-root symbols. Hence, the acting space of B̆1(Jμ) may
be certain subspaces of the Fock space F2 = {|n1n2〉 | n1, n2 = 0, 1, 2, . . .}, in which
n1 and n2 need limiting in order that the values of the square roots appeared in the
matrix elements 〈n1 ± 1n2 ∓ 1|B̆1(J±)|n1n2〉 must be greater than or equal to zero.

Inserting Eq. (56) into Eq. (3), the Casimir invariant C of Rc1,c2,c3
q,p may be expressed

in terms of the boson number operators n̂1 and n̂2 as

C = ζ(N̂/2)

(q − 1)3

[
−C1(q − 1)2 + C2(q − 1)ζ(N̂/2) − C3ζ

2(N̂/2)
]
, (57)

where ζ(N̂ ) = p(q1+N̂ − 1). Equation (57) shows clearly that C depends on the total
particle number operator N̂ only, rather than the particle number difference operator
M̂ and the separate particle number operator n̂1 or n̂2. Calculating the expectation
value 〈n1n2|C|n1n2〉, we have

〈n1n2|C|n1n2〉 = ζ( j)

(q − 1)3

[
−C1(q − 1)2 + C2(q − 1)ζ( j) − C3ζ

2( j)
]
, (58)

where j = N/2 has been introduced, i.e., the values that j may take are half integers
( j = 0, 1/2, 1, . . .). The similar conclusion exists for SU(2) [30].
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(b) The non-unitary realization.

It follows from Eq. (54) that the choice g1(n̂1, n̂2) = 1 may immediately give rise
to the non-unitary double-boson realization

B̄1(J3) = p

q − 1

(
1 − q−M̂/2

)
,

B̄1(J+) = pq1−M̂/2(qn̂1 − 1)

(q − 1)3n̂1(n̂2 + 1)

[
−C1(q − 1)2

+C2 p(q − 1)
(

q1+N̂/2 + q1−M̂/2 − 2
)

(59)

−C3 p2
(

q2+N̂ + q2−M̂ − 3q1+N̂/2 − 3q1−M̂/2 + q2+n̂2 + 3
)]

a+
1 a2,

B̄1(J−) = a1a+
2 .

The Casimir invariant C has the same expression as Eq. (57). Notice that except for
the special case of q = p = C1 = C2 = 1 and C3 = 0, the double-boson realization
(59) is in fact analogous to the Dyson single-boson realization of SU(2).

Different from the unitary realization (56), no square-root symbols appear in the
nonunitary realization (59), hence, it may not only avoid the convergence questions
associated with the expansion of square-root operator but also make the values of
n1 and n2 in {|n1n2〉} unlimited, i.e., the acting space of B̄1(Jμ) is the whole Fock
space F2.

(c) Unitarization of the non-unitary realization.

Following the same method as used in Sect. 3.1, the non-unitary realization (59)
may also be connected with the unitary realization (56) by the corresponding sim-
ilarity transformation. However, because of the complexity of result (59), here we
restrict ourselves to the special case q = p = 1, i.e., B̄ ′

1(Jμ) = limq,p=1 B̄1(Jμ) and
B̆ ′

1(Jμ) = limq,p=1 B̆1(Jμ).
Denoting the similarity transformation by S1, we have

S1 B̄ ′
1(Jμ)S−1

1 = B̆ ′
1(Jμ), μ = 3, ±. (60)

The equation for μ = 3 implies that S1 depends only on the particle number operators,
n̂1 and n̂2.

Using Eq. (60) and the unitary conditions (B̆ ′
1(J±))† = B̆ ′

1(J∓), we may obtain the
following unitarization equations

U−1
1

(
B̄ ′

1(J3)
)†

U1 = B̄ ′
1(J3),

U−1
1

(
B̄ ′

1(J±)
)†

U1 = B̄ ′
1(J∓),

(61)

where U1 ≡ S†
1 S1 is Hermitian. Calculating the matrix element of the first equation of

Eq. (61) in the Fock space F2, and using Eq. (59) with q = p = 1, we may deduce the
difference equation satisfied by the expectation value S1(n1, n2) ≡ 〈n1n2|S1|n1n2〉,
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{
−4C1 + 4C2(n2 + 2) − C3

[
n2

1 + 3(n2 + 2)2
]}

S1(n1, n2)
2

−4(n2 + 1)S1 (n1 − 1, n2 + 1)2 = 0. (62)

Its solution is

S1
(
n̂1, n̂2

) =

√√√√√
C1−n̂1

3 �(−n̂2)�
(
ω+

1 (N̂ )
)

�(ω−
1 (N̂ ))

�(1 − N̂ )�
(
ω+

1 (N̂ ) + n̂1 − 1
)

�
(
ω−

1 (N̂ ) + n̂1 − 1
) , (63)

where �(ŝ) stands for an operator function of ŝ, whose expectation value in
F is the ordinary Gamma symbol �(s) for the integer or real number s, i.e.,
〈n1n2| �(ŝ) |n1n2〉 = �(s). The symbol ω±

1 (x̂) is given by

ω±
1 (x̂) = 1

4C3

[
2C2 + C3(2 − 3x̂) ±

√
−16C1C3 + [2C2 − C3(2 + x̂)][2C2 + 3C3(2 + x̂)]

]
.

In Eq. (63), the minus sign out of the square-root symbol has been omitted without
loss of generality.

3.3 The second kind of double-boson realizations of Rc1,c2,c3
q,p

The second kind of double-boson realizations of Rc1,c2,c3
q,p may be chosen in the form

B(k,l)
2 (J3) = h(k,l)

2 (n̂1, n̂2),

B(k,l)
2 (J+) = f (k,l)

2 (n̂1, n̂2)(a
+
1 )k(a+

2 )l , (64)

B(k,l)
2 (J−) = ak

1al
2g(k,l)

2 (n̂1, n̂2),

where the real operator functions h(k,l)
2 (n̂1, n̂2), f (k,l)

2 (n̂1, n̂2), and g(k,l)
2 (n̂1, n̂2) have

to be determined by the commutation relations (4) of Rc1,c2,c3
q,p .

It follows from the first equation of Eq. (4) that we obtain the equation satisfied by
h(k,l)

2 (n̂1, n̂2)

h(k,l)
2 (n̂1, n̂2) − 1

q
h(k,l)

2 (n̂1 − k, n̂2 − l) = p

q
. (65)

Its solution is given by

h(k,l)
2 (n̂1, n̂2) = p

q − 1

(
1 − qβ− n̂1

2k − n̂2
2l

)
, (66)

where β is an arbitrary real number, which will be set as −1/2 in order to give the
well known results of SU(1,1) by taking q = p = 1, C1 = C2 = −1, and C3 = 0.
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The third equation of Eq. (4) requires that f2(n̂1, n̂2)g2(n̂1, n̂2) satisfies the fol-
lowing equation

[
k∏

i=1

(
n̂1 − i + 1

)
] [

l∏

i=1

(
n̂2 − i + 1

)
]

f (k,l)
2

(
n̂1, n̂2

)
g(k,l)

2 (n̂1, n̂2)

−
[

k∏

i=1

(n̂1 + i)

] [
l∏

i=1

(n̂2 + i)

]
f (k,l)
2

(
n̂1 + k, n̂2 + l

)
g(k,l)

2

(
n̂1 + k, n̂2 + l

)

= p
(

C1 − C2 p + C3 p2
)

+
(

C1 − C1q + 2C2 pq − 3C3 p2q
)

h(k,l)
2

(
n̂1, n̂2

)

+
(

C2 − C2q2 + 3C3 pq2
) [

h(k,l)
2

(
n̂1, n̂2

)]2 + C3(1 − q3)
[
h(k,l)

2

(
n̂1, n̂2

)]3
.

(67)

Inserting Eq. (66) into Eq. (67), we may obtain

f2(n̂1, n̂2)g2
(
n̂1, n̂2

) =
p

(
qn̂1 − 1

)

(q − 1)3n̂1n̂2

[
−C1(q − 1)2q(1−N̂ )/2

+C2 p(q − 1)
(

q1−N̂ + q1−n̂2 − 2q(1−N̂ )/2
)

+C3 p2
(

3q1−N̂ + 3q1−n̂2 − q3(1−N̂ )/2 − 3q(1−N̂ )/2

−q(3−N̂ )/2−n̂2 − q(3+M̂)/2−n̂2
)]

. (68)

Similarly, we will discuss in the following the unitary realizations and the non-
unitary realization of Rc1,c2,c3

q,p for the simple case of (k, l) = (1, 1).

(a) The unitary realizations.

The unitary relations B†
2 (J±) = B2(J∓) require f2(n̂1, n̂2) = g2(n̂1, n̂2), then

substituting the expression of f2(n̂1, n̂2) given by Eq. (68) into Eq. (65), we may
obtain

B̆2(J3) = p

q − 1

(
1 − q−(1+N̂ )/2

)
,

B̆2(J+) =
√

p(qn̂1 − 1)

(q − 1)3n̂1n̂2

[
−C1(q − 1)2q(1−N̂ )/2

+C2 p(q − 1)
(

q1−N̂ + q1−n̂2 − 2q(1−N̂ )/2
)

+C3 p2
(

3q1−N̂ + 3q1−n̂2 − q3(1−N̂ )/2 − 3q(1−N̂ )/2

−q(3−N̂ )/2−n̂2 − q(3+M̂)/2−n̂2
)]1/2

a+
1 a+

2 , (69)

B̆2(J−) = a1a2

√
p(qn̂1 − 1)

(q − 1)3n̂1n̂2

[
−C1(q − 1)2q(1−N̂ )/2
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+C2 p(q − 1)
(

q1−N̂ + q1−n̂2 − 2q(1−N̂ )/2
)

+C3 p2
(

3q1−N̂ + 3q1−n̂2 − q3(1−N̂ )/2 − 3q(1−N̂ )/2

−q(3−N̂ )/2−n̂2 − q(3+M̂)/2−n̂2
)]1/2

.

It is easy to check that the realization (69) obeys the commutation relations of Rc1,c2,c3
q,p .

Inserting Eq. (69) into Eq. (3), the Casimir invariant C of Rc1,c2,c3
q,p reads

C = η(M̂/2)

(q − 1)3

[
C1(q − 1)2 + C2(q − 1)η(M̂/2) + C3η

2(M̂/2)
]
, (70)

where η(M̂) = p(1 − q M̂+1/2). Calculating the expectation value of C in the Fock
space F2 gives

〈n1n2|C|n1n2〉 = η( j)

(q − 1)3

[
C1(q − 1)2 + C2(q − 1)η( j) + C3η

2( j)
]
, (71)

where j = M/2, M = n1 − n2 is the eigenvalue of M̂ .
It is clear from Eqs. (69) and (70) that B̆2(J3) depends on the total particle number

operator N̂ only, while C the particle number difference operator M̂ only, which are
different from those for the first kind of double-boson realization given in the last
subsection.

Finally, let us end this subsection by giving the symmetric results for Rc1,c2,c3
q,p . First,

exchanging n̂1 and n̂2 in Eqs. (69) and (70), then combining them with the respective
original one, we may obtain the new double-boson realization

B̆3(J3) = p

q − 1

(
1 − q−(1+N̂ )/2

)
,

B̆3(J+) =
√

1

2(q − 1)3n̂1n̂2

[
C1 p(q − 1)2q(1−N̂ )/2

(
−qn̂1 − qn̂2 + 2

)

+C2 p2(q − 1)
(
−2q1−N̂ + q1+M̂ + q1−M̂ + 4q(1−N̂ )/2 − 2q(1+M̂)/2

−2q(1−M̂)/2
)

+ C3 p3
(
−6q1−N̂ + 3q1+M̂ + 3q1−M̂

+2q3(1−N̂ )/2 + 6q(1−N̂ )/2 − q3(1+M̂)/2

−3q(1+M̂)/2 − q3(1−M̂)/2 − 3q(1−M̂)/2
)]1/2

a+
1 a+

2 , (72)

B̆3(J−) = a1a2

√
1

2(q − 1)3n̂1n̂2

[
C1 p(q − 1)2q(1−N̂ )/2

(
−qn̂1 − qn̂2 + 2

)

+C2 p2(q − 1)
(
−2q1−N̂ + q1+M̂ + q1−M̂ + 4q(1−N̂ )/2 − 2q(1+M̂)/2

−2q(1−M̂)/2
)

+ C3 p3
(
−6q1−N̂ + 3q1+M̂ + 3q1−M̂

123



806 J Math Chem (2013) 51:785–809

+2q3(1−N̂ )/2 + 6q(1−N̂ )/2 − q3(1+M̂)/2

−3q(1+M̂)/2 − q3(1−M̂)/2 − 3q(1−M̂)/2
)]1/2

,

and the new Casimir invariant

C = 1

(q − 1)3

[
−C1(q − 1)2η(1) + C2(q − 1)η(2) − C3η

(3)
]
, (73)

where η(i) = p[(1 − q(1+M̂)/2)i + (1 − q(1−M̂)/2)i ]/2. It is not difficult to check that
the realization (72) obeys the commutation relations of Rc1,c2,c3

q,p , and C given by Eq.
(73) commutes with B̆3(Jμ) given by Eq. (72). We observe that indeed there exist
explicit symmetries in Eqs. (72) and (73), that is, exchanging n̂1 and n̂2 leaves these
results invariant. Although the expression (73) is very different from the expression
(58) given in the last subsection, their eigenvalues in the Fock space are the same under
some limiting values, for example, q = p = 1.

(b) The non-unitary realization.

It follows from Eq. (68) that g2(n̂1, n̂2) = 1 may immediately give rise to the
non-unitary double-boson realization

B̄2(J3) = p

q − 1

(
1 − q−(1+N̂ )/2

)
,

B̄2(J+) =
p

(
qn̂1 − 1

)

(q − 1)3n̂1n̂2

[
−C1(q − 1)2q(1−N̂ )/2

+C2 p(q − 1)
(

q1−N̂ + q1−n̂2 − 2q(1−N̂ )/2
)

+C3 p2(3q1−N̂ + 3q1−n̂2 − q3(1−N̂ )/2 − 3q(1−N̂ )/2 (74)

−q(3−N̂ )/2−n̂2 − q(3+M̂)/2−n̂2
)]

a+
1 a+

2 ,

B̄2(J−) = a1a2.

The Casimir invariant C has the same expression as Eq. (70). Similar to (56), the acting
spaces of B̄2(Jμ) are the whole Fock space F2.

The symmetric forms of the non-unitary double-boson realization (74) may also be
obtained by using the same method as used in the last subsection, however, they are
not given here.

(c) Unitarization of the non-unitary realization.

Now we discuss the connection between the non-unitary realization (74) and the
unitary realization (69). Similarly, here we restrict ourselves to the special case q =
p = 1, i.e. B̄ ′

2(Jμ) = limq,p=1 B̄2(Jμ) and B̆ ′
2(Jμ) = limq,p=1 B̆2(Jμ).

Denoting the similarity transformation by S2, we have

S2 B̄ ′
2(Jμ)S−1

2 = B̆ ′
2(Jμ), μ = 3, ±. (75)
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Here S2 depends only on the particle number operators n̂1 and n̂2 too.
Using Eq. (75) and the unitary conditions (B̆ ′

2(J±))† = B̆ ′
2(J∓), we may obtain the

following unitarization equations

U−1
2

(
B̄ ′

2(J3)
)†

U2 = B̄ ′
2(J3),

U−1
2

(
B̄ ′

2(J±)
)†

U2 = B̄ ′
2(J∓),

(76)

where U2 ≡ S†
2 S2. Calculating the matrix element of Eq. (76) in the Fock space F2,

and using Eq. (74) with q = p = 1, we have

{
4C1 + 4C2(n2 − 1) + C3

[
n2

1 + 3(n2 − 1)2
]}

S2(n1, n2)
2

+4n2S2 (n1 − 1, n2 − 1)2 = 0. (77)

Solving Eq. (77) gives

S2(n̂1, n̂2) =
√√√√ (−1)1+n̂1C1−n̂1

3 �(1 + n̂2)�(ω+
2 (M̂))�(ω−

2 (M̂))

�(2 − M̂)�(ω+
2 (M̂) + n̂1 − 1)�(ω−

2 (M̂) + n̂1 − 1)
, (78)

where

ω±
2 (x̂) = 1

4C3

×
[
2C2 + C3(5 − 3x̂) ±

√
−16C1C3 + [2C2 − C3(1 + x̂)][2C2 + 3C3(1 + x̂)]

]
.

3.4 The irreducible representation of Rc1,c2,c3
q,p

Similar to SU(2), Rc1,c2,c3
q,p has the Casimir invariant C, hence, making use of the very

parallel treatment of angular momentum in quantum mechanics [30], it is not difficult
to obtain the unitary representation of Rc1,c2,c3

q,p in the common eigenvectors (called the
angular momentum basis) {| jm〉|m = − j, − j + 1, . . . , j} of the elements {C, J3},
with j and m labeling the eigenvalues of C and J3 respectively. Here, as an application
of boson realizations, we now use one of double-boson realizations to calculate the
irreducible representation of Rc1,c2,c3

q,p .
It is well known that the explicit connection between the particle numbers {n1, n2}

and the angular momentum quantum numbers { j, m} is given by [30]

j = 1

2
(n1 + n2), m = 1

2
(n1 − n2). (79)

We observe from Eqs. (57) and (56) that the same connection exists for the first kind of
unitary double-boson realization, i.e., C depends on the total particle number operator
N̂ = n̂1 + n̂2 only and B̆1(J3) the particle number difference operator M̂ = n̂1 − n̂2
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only. Thus, using the first kind of unitary double-boson realization (56) and Eq. (79),
we may obtain

J3| jm〉 = p

q − 1
(1 − q−m)| jm〉,

J+| jm〉 =
√

pq−m(q j+m+1 − 1)

(q − 1)3

[
−C1(q − 1)2 + C2 p(q − 1)

(
q j+1 + q−m − 2

)

−C3 p2
(

q2( j+1)−3q j+1+q−2m −3q−m +q j−m+1+3
)]1/2 | jm + 1〉,

(80)

J−| jm〉 =
√

pq1−m(q j+m − 1)

(q − 1)3

[
−C1(q − 1)2+C2 p(q − 1)

(
q j+1+q1−m −2

)

−C3 p2
(

q2( j+1)−3q j+1+q2(1−m)−3q1−m +q j−m+2+3
)]1/2 | jm−1〉.

When q = p = C1 = C2 = 1 and C3 = 0, Eq. (80) becomes the standard form of
the irreducible representation of SU(2) [30].

4 Conclusion

In this paper we have obtained the explicit expressions for the master representation
of Rc1,c2,c3

q,p on the space of its universal enveloping algebra U (R) and other inde-
composable (irreducible) representations subduced on some invariant subspaces of
U (R) or induced on some quotient spaces U (R)/Ii with Ii s being the left ideals with
respect to U (R). For U (R), we may choose the other bases by arranging the three
generators J+, J−, J3 in different sequences, for example, {J n

3 J m+ Jr−}, then the corre-
sponding indecomposable (irreducible) representations can be obtained by the similar
approach. They may be related to each other by symmetry considerations. Further-
more, we have obtained various boson realizations of Rc1,c2,c3

q,p such as single-boson,
single inverse boson, and double-boson (symmetric) realizations by generalizing the
usual boson realizations of SU(2) and SU(1,1). It is worth mentioning that in the
single-boson realizations, the solution (32) of Eq. (30) is not unique because it allows
an extra term aqb−n̂/k , where a and b are arbitrary constants. Similar properties exist
for the single inverse boson realizations and the double-boson realizations. We have
revealed the fact that the nonunitary realizations and the unitary ones may be related by
the similarity transformations, which have been obtained by solving the corresponding
unitarization equations.
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